

1
 © RedOps GmbH – Daniel Feichter

Agenda / Timetable

Endpoint Security Insights: Shellcode
Loaders & Evasion Fundamentals

Contents
Day 1: Fundamentals ... 2

Day 2: Memory Manipulation & Shellcode Enc/Dec .. 4

Day 3: Advanced Memory Techniques ... 6

Day 4: Shellcode Execution Techniques & Fine Tuning .. 8

Bonus Material - Homework ... 10

2
 © RedOps GmbH – Daniel Feichter

Day 1: Fundamentals
Module Module Details Timetable

Official Course
Begin

▪ Kick off for day 1

08:15 am

Course Introduction

▪ An overview of the topics that will be covered
over the next 4 days.

▪ Course objectives and expectations.
▪ An introduction to the tools, code, etc. that will

be used during the course.

08:30 am – 09:00 am

Windows Internals
Basics & Endpoint
Security a Primer

▪ A brief introduction to Windows internals
▪ A brief introduction to antivirus and EDR
▪ Architecture of a modern EDR
▪ Differences between antivirus (AV) and EDR
▪ Introduction to relevant endpoint security

mechanisms.

09:00 am – 10:00 am

Coffee Break

10:00 am – 10:15 am

Deep-Dive
Shellcode Loader

▪ Main components of a shellcode loader
▪ Technical comparison of shellcode from

different C2 frameworks
▪ Evasion options from a shellcode perspective
▪ Evasion options from a loader perspective

10:15 am – 11:00 am

Staged vs Non-
Staged Shellcode

▪ Staged vs. non-staged shellcode introduction
▪ Theory: Meterpreter shellcode staged/ non-

staged
▪ Practice: How to create staged/ non-staged

shellcode with Meterpreter
▪ Limitations of non-staged shellcode in the

context of Visual Studio.

11:00 am – 11:30 am

Hands-on:
A base - Win32
Classic Loader

▪ A deep dive int to a Win32 classic loader, which
builds the basic for all loaders later in this
course

▪ Build the Win32 classic loader in Visual Studio
▪ Debugging the loader with x64dbg, memory

allocation, copying shellcode, and executing
shellcode.

11:30 pm – 12:00 pm

3
 © RedOps GmbH – Daniel Feichter

▪ Weaknesses of the Win32 loader and how to
build an evasive shellcode loader step-by-step

Lunch Break

12:00 pm – 01:00 pm

Hands-on:
A base - Win32
Classic Loader

▪ A deep dive int to a Win32 classic loader, which
builds the basic for all loaders later in this
course

▪ Build the Win32 classic loader in Visual Studio
▪ Debugging the loader with x64dbg, memory

allocation, copying shellcode, and executing
shellcode.

▪ Weaknesses of the Win32 loader and how to
build an evasive shellcode loader step-by-step

01:00 pm – 02:30 pm

Hands-on:
Shellcode in PE

▪ An introduction to sections in portable
executable structure

▪ Building a Win32 loader that stores shellcode in
the .data section

▪ Building a Win32 loader that stores shellcode in
the resource section (.rsrc)

▪ Debugging both loaders, debug shellcode
memory allocation, shellcode position etc.

02:30 pm – 04:00 pm

Coffee Break

04:00 pm – 04:15 pm

Summary and Q&A for day 1

04:15 pm – 05:00 pm

4
 © RedOps GmbH – Daniel Feichter

Day 2: Memory Manipulation & Shellcode Enc/Dec
Module Module Details Timetable

Official Course
Begin

▪ Kick off for day 2

08:15 am

Hands-on:
Memory Protection

▪ An introduction to memory protection constants
in Windows and how to use them in context of
shellcode loaders

▪ Building a Win32 loader which allocates rw-
memory, changes memory protection to rx-
memory etc.

▪ Debugging the loader, debug position, rw
allocated memory, changing of memory etc.

08:30 am – 10:00 am

Coffee Break

10:00 am – 10:15 am

Hands-on:
Shellcode Encoding

▪ Deep dive into shellcode encoding types like
base64, double base64, MACs, UUIDs,
shellcode-as-words

▪ Introduction to the CodeFuscation tool, which
will be used throughout the course to encode
shellcode.

▪ Building a Win32 loader which supports double
base64 encoded shellcode, decoding at runtime
etc.

▪ Building a Win32 loader which supports
shellcode-as-words encoded shellcode,
decoding at runtime etc.

▪ Debugging the loader with x64dbg, debug
position of encoded shellcode, shellcode
decoding, memory allocation, etc.

10:15 am – 12:00 pm

Lunch Break

12:00 pm – 01:00 pm

Hands-on:
Shellcode
Encryption

▪ Deep dive into shellcode encoding types like
XOR, RC4 and AES

▪ Introduction to the CodeFuscation tool, which
will also be used throughout the course encrypt
shellcode.

01:00 pm – 02:30 pm

5
 © RedOps GmbH – Daniel Feichter

▪ Building a Win32 loader which supports RC4
encrypted shellcode, decoding at runtime etc.

▪ Debugging the loader with x64dbg, debug
position of encrypted shellcode, shellcode
decryption, memory allocation, etc.

Coffee Break

02:30 pm – 02:45 pm

Hands-on:
Shellcode on Web

Server

▪ How to store shellcode outside of loader (PE)
and instead host it on webserver or cloud
service like GitHub and Microsoft Azure

▪ Learn how to store shellcode on GitHub in a
private repository and make it accessible via
Privat Access Token (PAT)

▪ Learn how to store shellcode in a private azure
blob by using a SAS-URL.

▪ Building a Win32 loader which supports
download encrypted shellcode from private
GitHub repository

▪ Building a Win32 loader which supports
download encrypted shellcode from private
Azure blob storage

▪ Debugging both loaders, debug for position from
GitHub PAT, Azure SAS-URL, shellcode
decryption etc.

02:45 pm – 04:45 pm

Summary and Q&A for day 2

04:45 pm – 05:15 pm

6
 © RedOps GmbH – Daniel Feichter

Day 3: Advanced Memory Techniques
Module Module Details Timetable

Official Course
Begin

▪ Kick off for day 3

08:15 am

Hands-on:
Heap Memory

Allocation

▪ Deep dive into memory allocation via heap
allocation, difference between VirtualAlloc and
HeapAlloc etc.

▪ Build a Win32 loader that supports UUID
encoded shellcode in PE, allocating memory via
HeapAlloc, etc.

▪ Debugging the loader, debug position from
shellcode, position from heap object, change
from memory protection etc.

08:30 am – 10:00 am

Coffee Break

10:00 am – 10:15 am

Hands-on:
Mapped Memory

▪ Deep dive into mapped memory/memory
mapping, why should we use mapped memory
from an evasion perspective?

▪ Building a Win32 loader which supports double
Base64 encoded shellcode in PE and mapped
memory

▪ Debugging the loader, debug loading from
module, base address from .text section,
shellcode stomping etc.

10:15 am – 12:00 pm

Lunch Break

12:00 pm – 01:00 pm

Hands-on:
Module Stomping

▪ Deep dive into module stomping, why should we
use module stomping, how to choose a module
for stomping etc.

▪ Building a Win32 loader which supports
shellcode-as-words encoded shellcode in PE,
module stomping etc.

▪ Debugging the loader, debug loading from
module, base address from .text section,
shellcode stomping etc.

01:00 pm – 02:30 pm

7
 © RedOps GmbH – Daniel Feichter

Coffee Break

02:30 pm – 02:45 pm

Hands-on:
Function Stomping

▪ Deep dive into function stomping, why should
we use function stomping, how to choose a
function in a module for function stomping etc.

▪ Building a Win32 loader which supports double
base64 encoded shellcode in PE, function
stomping etc.

▪ Debugging the loader, debug loading from
module, base address from .text section from
the targeted function inside the module, change
of memory protection, shellcode stomping etc.

02:45 pm – 04:30 pm

Summary and Q&A for day 3

04:30 pm – 05:15 pm

8
 © RedOps GmbH – Daniel Feichter

Day 4: Shellcode Execution Techniques & Fine Tuning
Module Module Details Timetable

Official Course
Begin

Kick off for day 4

08:15 am

Hands-on:
Asynchronous

Procedure Calls
(APCs)

▪ Introduction into APCs, why should we use APCs
for shellcode execution etc.

▪ Building a Win32 loader which supports UUID
encoded shellcode in PE, function stomping,
shellcode execution via APCs in context of
SleepEx and NtTestAlert function.

▪ Debugging the loader, debug loading from
module, base address from .text section from the
targeted function inside the module, change of
memory protection, shellcode stomping,
shellcode execution via APCs etc.

08:30 am – 10:00 am

Coffee Break

10:00 am – 10:15 am

Hands-on:
Callback Functions

▪ Introduction into callback functions, why should
we use Callback functions for shellcode
execution etc.

▪ Building a Win32 loader which supports
shellcode-as-words encoded shellcode in PE,
function stomping, shellcode execution via
callback function etc.

▪ Debugging the loader, debug loading from
module, base address from .text section from the
targeted function inside the module, change of
memory protection, shellcode stomping,
shellcode execution via callback function etc.

10:15 am – 12:00 pm

Lunch Break

12:00 pm – 01:00 pm

Hands-on:
Thread pools

▪ Introduction into thread pools in local execution
context, why should we use threadpools for
shellcode execution etc.

▪ Building a Win32 loader which supports
shellcode-as-words encoded shellcode in PE,

01:00 pm – 02:30 pm

9
 © RedOps GmbH – Daniel Feichter

module stomping, shellcode execution via
threadpools etc.

▪ Debugging the loader, loading from module, base
address from .text section from the targeted

▪ function inside the module, change of memory
protection, shellcode stomping, shellcode
execution via threadpools etc.

Coffee Break

02:30 pm – 02:45 pm

Hands-on:
Loader Finishing

▪ We want to tweak and polish our loaders, learn
compilation tips for Visual Studio, how to improve
the entropy of your loader, how to apply legit
metadata, how to hide the console window, how
to apply fake certificates, how to implement EDR
specific OPSEC gadgets to further improve the
stealthiness of loaders, etc.

02:45 pm – 04:15 pm

Summary and Q&A for day 4

04:15 pm – 05:15 pm

10
 © RedOps GmbH – Daniel Feichter

Bonus Material - Homework

Module Module Details Timetable

Import Address

Table Hiding

▪ Introduction to the Import Address Table (IAT),
how to implement IAT hiding using custom
functions, and how to implement IAT hiding in the
loaders we build during this course.

API Hashing

▪ What is API hashing, why is it a useful addition to
IAT hiding, how to implement it CRC32 hashing or
combine it with IAT hiding.

Fibers ▪ What are Fibres in Windows? How can they be
used for code execution? How can they be
implemented using the C language? What
advantages do Fibres offer for code execution in
relation to specific EDRs?

The agenda and content of this material are continuously updated and refined to maintain
relevance and accuracy. Each iteration of the course may vary slightly depending on factors such
as participants experience levels, the volume of questions, and other dynamic elements. These
adjustments ensure the most valuable and up-to-date learning experience.

